CHAPTER REVIEW

Concept Items

9.1 Work, Power, and the Work–Energy Theorem

- 1. Is it possible for the sum of kinetic energy and potential energy of an object to change without work having been done on the object? Explain.
 - a. No, because the work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in KE requires a change in velocity. It is assumed that mass is constant.
 - b. No, because the work-energy theorem states that work done on an object is equal to the sum of kinetic energy, and the change in KE requires a change in displacement. It is assumed that mass is constant.
 - c. Yes, because the work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in KE requires a change in velocity. It is assumed that mass is constant.
 - d. Yes, because the work-energy theorem states that work done on an object is equal to the sum of kinetic energy, and the change in KE requires a change in displacement. It is assumed that mass is constant.
- **2**. Define work for one-dimensional motion.
 - a. Work is defined as the ratio of the force over the distance.
 - b. Work is defined as the sum of the force and the distance.
 - c. Work is defined as the square of the force over the distance.
 - d. Work is defined as the product of the force and the distance.

3. A book with a mass of 0.30 kg falls 2 m from a shelf to the floor. This event is described by the work–energy

theorem: $W = fd = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$ Explain why this is enough information to calculate the speed with which the book hits the floor.

- a. The mass of the book, m, and distance, d, are stated. *F* is the weight of the book $mg \cdot v_1$ is the initial velocity and v_2 is the final velocity. The final velocity is the only unknown quantity.
- b. The mass of the book, m, and distance, d, are stated. *F* is the weight of the book $mg \cdot v_1$ is the final velocity and v_2 is the initial velocity. The final velocity is the only unknown quantity.
- c. The mass of the book, m, and distance, d, are stated. *F* is the weight of the book $mg \cdot v_1$ is the initial velocity and v_2 is the final velocity. The final velocity and the initial velocities are the only unknown quantities.
- d. The mass of the book, m, and distance, d, are stated. *F* is the weight of the book $mg \cdot v_1$ is the final velocity and v_2 is the initial velocity. The final velocity and the initial velocities are the only unknown quantities.

<u>9.2 Mechanical Energy and Conservation of</u> <u>Energy</u>

- **4**. Describe the changes in KE and PE of a person jumping up and down on a trampoline.
 - a. While going up, the person's KE would change to PE. While coming down, the person's PE would change to KE.
 - b. While going up, the person's PE would change to KE. While coming down, the person's KE would change to PE.
 - c. While going up, the person's KE would not change, but while coming down, the person's PE would change to KE.
 - d. While going up, the person's PE would change to KE, but while coming down, the person's KE would not change.
- 5. You know the height from which an object is dropped. Which equation could you use to calculate the velocity as the object hits the ground?

a.
$$v = h$$

b.
$$v = \sqrt{2h}$$

c.
$$v = gn$$

d.
$$v = \sqrt{2gh}$$

Critical Thinking Items

9.1 Work, Power, and the Work–Energy Theorem

- 9. Which activity requires a person to exert force on an object that causes the object to move but does not change the kinetic or potential energy of the object?
 - a. Moving an object to a greater height with acceleration
 - b. Moving an object to a greater height without acceleration
 - c. Carrying an object with acceleration at the same height
 - d. Carrying an object without acceleration at the same height
- 10. Which statement explains how it is possible to carry books to school without changing the kinetic or potential energy of the books or doing any work?
 - a. By moving the book without acceleration and keeping the height of the book constant
 - b. By moving the book with acceleration and keeping the height of the book constant
 - c. By moving the book without acceleration and changing the height of the book
 - d. By moving the book with acceleration and changing the height of the book

- 6. The starting line of a cross country foot race is at the bottom of a hill. Which form(s) of mechanical energy of the runners will change when the starting gun is fired?
 - a. Kinetic energy only
 - b. Potential energy only
 - c. Both kinetic and potential energy
 - d. Neither kinetic nor potential energy

<u>9.2 Mechanical Energy and Conservation of</u> Energy

- 11. True or false—A cyclist coasts down one hill and up another hill until she comes to a stop. The point at which the bicycle stops is lower than the point at which it started coasting because part of the original potential energy has been converted to a quantity of heat and this makes the tires of the bicycle warm.
 - a. True
 - b. False

Problems

9.1 Work, Power, and the Work–Energy Theorem

- 14. A baseball player exerts a force of 100 N on a ball for a distance of 0.5 m as he throws it. If the ball has a mass of 0.15 kg, what is its velocity as it leaves his hand?
 - a. -36.5 m/s
 - b. -25.8 m/s
 - c. 25.8 m/s
 - d. 36.5 m/s
- 15. A boy pushes his little sister on a sled. The sled accelerates from 0 to 3.2 m/s. If the combined mass of his sister and the sled is 40.0 kg and 18 W of power were generated, how long did the boy push the sled?
 - a. 205 s
 - b. 128 s
 - c. 23 s
 - d. 11 s

9.2 Mechanical Energy and Conservation of Energy

- **16**. What is the kinetic energy of a 0.01 kg bullet traveling at a velocity of 700 m/s?
 - a. 3.5 J
 - b. 7J
 - c. $2.45 \times 10^3 \text{ J}$
 - d. $2.45 \times 10^5 \text{ J}$
- 17. A marble rolling across a flat, hard surface at 2 m/s rolls up a ramp. Assuming that $g = 10 \text{ m/s}^2$ and no energy is lost to friction, what will be the vertical height of the marble when it comes to a stop before rolling back down? Ignore effects due to the rotational kinetic energy.
 - a. 0.1 m
 - b. 0.2 m
 - c. 0.4 m
 - d. 2 m

18. The potential energy stored in a compressed spring is

 $U = \frac{1}{2}kx^2$, where *k* is the force constant and *x* is the distance the spring is compressed from the equilibrium position. Four experimental setups described below can be used to determine the force constant of a spring. Which one(s) require measurement of the fewest number of variables to determine *k*? Assume the acceleration due to gravity is known.

- I. An object is propelled vertically by a compressed spring.
- II. An object is propelled horizontally on a frictionless surface by a compressed spring.
- III. An object is statically suspended from a spring.
- IV. An object suspended from a spring is set into oscillatory motion.
- a. I only
- b. III only
- c. I and II only
- d. III and IV only

TEST PREP

Multiple Choice

9.1 Work, Power, and the Work–Energy Theorem

- 22. Which expression represents power?
 - a. *fd*
 - b. mgh
 - c. $\frac{mv^2}{2}$
 - d. $\frac{W}{1}$
- **23**. The work–energy theorem states that the change in the kinetic energy of an object is equal to what?
 - a. The work done on the object
 - b. The force applied to the object
 - c. The loss of the object's potential energy
 - d. The object's total mechanical energy minus its kinetic energy
- **24**. A runner at the start of a race generates 250 W of power as he accelerates to 5 m/s . If the runner has a mass of 60 kg, how long did it take him to reach that speed?
 - a. 0.33 s
 - b. 0.83 s
 - c. 1.2 s
 - d. 3.0 s
- **25**. A car's engine generates 100,000 W of power as it exerts a force of 10,000 N. How long does it take the car to travel 100 m?
 - a. 0.001 s
 - b. 0.01 s
 - c. 10 s
 - d. 1,000 s

9.2 Mechanical Energy and Conservation of Energy

- **26.** Why is this expression for kinetic energy incorrect? $KE = (m)(v)^2$.
 - a. The constant *g* is missing.
 - b. The term *v* should not be squared.
 - c. The expression should be divided by 2.
 - d. The energy lost to friction has not been subtracted.
- **27**. What is the kinetic energy of a 10kg object moving at 2.0 m/s?
 - a. 10J
 - b. 20 J
 - c. 40 J
 - d. 100 J

- **28**. Which statement best describes the PE-KE transformations for a javelin, starting from the instant the javelin leaves the thrower's hand until it hits the ground.
 - a. Initial PE is transformed to KE until the javelin reaches the high point of its arc. On the way back down, KE is transformed into PE. At every point in the flight, mechanical energy is being transformed into heat energy.
 - b. Initial KE is transformed to PE until the javelin reaches the high point of its arc. On the way back down, PE is transformed into KE. At every point in the flight, mechanical energy is being transformed into heat energy.
 - c. Initial PE is transformed to KE until the javelin reaches the high point of its arc. On the way back down, there is no transformation of mechanical energy. At every point in the flight, mechanical energy is being transformed into heat energy.
 - d. Initial KE is transformed to PE until the javelin reaches the high point of its arc. On the way back down, there is no transformation of mechanical energy. At every point in the flight, mechanical energy is being transformed into heat energy.
- **29**. At the beginning of a roller coaster ride, the roller coaster car has an initial energy mostly in the form of PE. Which statement explains why the fastest speeds of the car will be at the lowest points in the ride?
 - a. At the bottom of the slope kinetic energy is at its maximum value and potential energy is at its minimum value.
 - b. At the bottom of the slope potential energy is at its maximum value and kinetic energy is at its minimum value.
 - c. At the bottom of the slope both kinetic and potential energy reach their maximum values
 - d. At the bottom of the slope both kinetic and potential energy reach their minimum values.

Short Answer

9.1 Work, Power, and the Work–Energy Theorem

- **34**. Describe two ways in which doing work on an object can increase its mechanical energy.
 - a. Raising an object to a higher elevation does work as it increases its PE; increasing the speed of an object does work as it increases its KE.
 - b. Raising an object to a higher elevation does work as it increases its KE; increasing the speed of an object does work as it increases its PE.
 - c. Raising an object to a higher elevation does work as it increases its PE; decreasing the speed of an object does work as it increases its KE.
 - d. Raising an object to a higher elevation does work as it increases its KE; decreasing the speed of an object does work as it increases its PE.
- **35**. True or false—While riding a bicycle up a gentle hill, it is fairly easy to increase your potential energy, but to increase your kinetic energy would make you feel exhausted.
 - a. True
 - b. False
- **36**. Which statement best explains why running on a track with constant speed at 3 m/s is not work, but climbing a mountain at 1 m/s is work?
 - a. At constant speed, change in the kinetic energy is zero but climbing a mountain produces change in the potential energy.
 - b. At constant speed, change in the potential energy is zero, but climbing a mountain produces change in the kinetic energy.
 - c. At constant speed, change in the kinetic energy is finite, but climbing a mountain produces no change in the potential energy.
 - d. At constant speed, change in the potential energy is finite, but climbing a mountain produces no change in the kinetic energy.
- **37.** You start at the top of a hill on a bicycle and coast to the bottom without applying the brakes. By the time you reach the bottom of the hill, work has been done on you and your bicycle, according to the equation:

 $W = \frac{1}{2}m(v_2^2 - v_1^2)$ If *m* is the mass of you and your bike, what are v_1 and v_2 ?

- a. v_1 is your speed at the top of the hill, and v_2 is your speed at the bottom.
- b. v_1 is your speed at the bottom of the hill, and v_2 is your speed at the top.
- c. v_1 is your displacement at the top of the hill, and v_2 is your displacement at the bottom.
- d. v_1 is your displacement at the bottom of the hill, and v_2 is your displacement at the top.

9.2 Mechanical Energy and Conservation of Energy

- - a. True
 - b. False
- **39.** Which statement best explains why accelerating a car from 20 mph to 40 mph quadruples its kinetic energy?
 - a. Because kinetic energy is directly proportional to the square of the velocity.
 - b. Because kinetic energy is inversely proportional to the square of the velocity.
 - c. Because kinetic energy is directly proportional to the fourth power of the velocity.
 - d. Because kinetic energy is inversely proportional to the fourth power of the velocity.
- **40**. A coin falling through a vacuum loses no energy to friction, and yet, after it hits the ground, it has lost all its potential and kinetic energy. Which statement best explains why the law of conservation of energy is still valid in this case?
 - a. When the coin hits the ground, the ground gains potential energy that quickly changes to thermal energy.
 - When the coin hits the ground, the ground gains kinetic energy that quickly changes to thermal energy.
 - c. When the coin hits the ground, the ground gains thermal energy that quickly changes to kinetic energy.
 - d. When the coin hits the ground, the ground gains thermal energy that quickly changes to potential energy.
- **41**. True or false—A marble rolls down a slope from height h_1 and up another slope to height h_2 , where $(h_2 < h_1)$. The difference $mg(h_1 h_2)$ is equal to the heat lost due to the friction.
 - a. True
 - b. False

Extended Response

9.1 Work, Power, and the Work–Energy Theorem

46. Work can be negative as well as positive because an object or system can do work on its surroundings as well as have work done on it. Which of the following statements describes:

a situation in which an object does work on its surroundings by decreasing its velocity and a situation in which an object can do work on its surroundings by decreasing its altitude?

- a. A gasoline engine burns less fuel at a slower speed. Solar cells capture sunlight to generate electricity.
- b. A hybrid car charges its batteries as it decelerates. Falling water turns a turbine to generate electricity.
- c. Airplane flaps use air resistance to slow down for landing.
- Rising steam turns a turbine to generate electricity.
- d. An electric train requires less electrical energy as it decelerates.

A parachute captures air to slow a skydiver's fall.

- **47.** A boy is pulling a girl in a child's wagon at a constant speed. He begins to pull harder, which increases the speed of the wagon. Which of the following describes two ways you could calculate the change in energy of the wagon and girl if you had all the information you needed?
 - a. Calculate work done from the force and the velocity.

Calculate work done from the change in the potential energy of the system.

b. Calculate work done from the force and the displacement.

Calculate work done from the change in the potential energy of the system.

c. Calculate work done from the force and the velocity.

Calculate work done from the change in the kinetic energy of the system.

d. Calculate work done from the force and the displacement.

Calculate work done from the change in the kinetic energy of the system.

9.2 Mechanical Energy and Conservation of Energy

48. Acceleration due to gravity on the moon is 1.6 m/s² or about 16% of the value of g on Earth.
If an astronaut on the moon threw a moon rock to a height of 7.8 m, what would be its velocity as it struck the moon's surface?

How would the fact that the moon has no atmosphere affect the velocity of the falling moon rock? Explain your answer.

- a. The velocity of the rock as it hits the ground would be 5.0 m/s. Due to the lack of air friction, there would be complete transformation of the potential energy into the kinetic energy as the rock hits the moon's surface.
- b. The velocity of the rock as it hits the ground would be 5.0 m/s. Due to the lack of air friction, there would be incomplete transformation of the potential energy into the kinetic energy as the rock hits the moon's surface.
- c. The velocity of the rock as it hits the ground would be 12 m/s. Due to the lack of air friction, there would be complete transformation of the potential energy into the kinetic energy as the rock hits the moon's surface.
- d. The velocity of the rock as it hits the ground would be 12 m/s. Due to the lack of air friction, there would be incomplete transformation of the potential energy into the kinetic energy as the rock hits the moon's surface.
- **49.** A boulder rolls from the top of a mountain, travels across a valley below, and rolls part way up the ridge on the opposite side. Describe all the energy transformations taking place during these events and identify when they happen.
 - a. As the boulder rolls down the mountainside, KE is converted to PE. As the boulder rolls up the opposite slope, PE is converted to KE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - b. As the boulder rolls down the mountainside, KE is converted to PE. As the boulder rolls up the opposite slope, KE is converted to PE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - c. As the boulder rolls down the mountainside, PE is converted to KE. As the boulder rolls up the opposite slope, PE is converted to KE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - d. As the boulder rolls down the mountainside, PE is converted to KE. As the boulder rolls up the opposite slope, KE is converted to PE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.

- **49.** A boulder rolls from the top of a mountain, travels across a valley below, and rolls part way up the ridge on the opposite side. Describe all the energy transformations taking place during these events and identify when they happen.
 - a. As the boulder rolls down the mountainside, KE is converted to PE. As the boulder rolls up the opposite slope, PE is converted to KE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - b. As the boulder rolls down the mountainside, KE is converted to PE. As the boulder rolls up the opposite slope, KE is converted to PE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - c. As the boulder rolls down the mountainside, PE is converted to KE. As the boulder rolls up the opposite slope, PE is converted to KE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.
 - d. As the boulder rolls down the mountainside, PE is converted to KE. As the boulder rolls up the opposite slope, KE is converted to PE. The boulder rolls only partway up the ridge because some of the PE has been converted to thermal energy due to friction.